
Statistical Inference 
Test Set 1 

 
1. Let ~ ( ).X λΡ Find unbiased estimators of 3( ) , ( ) cos ,i ii e λλ λ− (iii) sinλ . (iv) Show that 

there does not exist unbiased estimators of 1/ , and exp{ 1/ }.λ λ−  
2. Let 1 2, ,..., nX X X be a random sample from a 2( , )N µ σ population. Find unbiased and 

consistent estimators of the signal to noise ration µ
σ  and quantile bµ σ+ , where b  is 

any given real.  
3. Let 1 2, ,..., nX X X be a random sample from a ( , 2 )U θ θ− population. Find an unbiased and 

consistent estimator of θ . 
4. Let 1 2,X X be a random sample from an exponential population with mean 1/ λ . Let 

1 2
1 2 1 2,

2
X XT T X X+

= = . Show that 1T  is unbiased and 2T is biased. Further, prove that 

2 1( ) ( )MSE T Var T≤ . 
5. Let 1T and 2T be unbiased estimators of θ  with respective variances 2

1σ  and 2
2σ and 

1 2 12cov( , )T T σ=  (assumed to be known). Consider 1 2(1 ) , 0 1.T T Tα α α= + − ≤ ≤  Show 
that T is unbiased and find value of α for which ( )Var T is minimized.  

6. Let 1 2, ,..., nX X X be a random sample from an ( , )Exp µ σ  population. Find the method of 
moment estimators (MMEs) of µ  and σ . 

7. Let 1 2, ,..., nX X X be a random sample from a Pareto population with density

1( ) , , 0, 2.Xf x x
x

β

β

βα α α β+= > > > Find the method of moments estimators of , .α β  

8. Let 1 2, ,..., nX X X be a random sample from a ( , )U θ θ− population. Find the MME of θ . 
9. Let 1 2, ,..., nX X X be a random sample from a lognormal population with density 

2
2

1 1( ) exp (log ) , 0.
22X ef x x x

x
µ

σσ π
 = − − > 
 

Find the MMEs of µ  and 2σ . 

10. Let 1 2, ,..., nX X X be a random sample from a double exponential ( , )µ σ  population. Find 
the MMEs of µ  and σ . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Hints and Solutions 
 

1. (i) 3{ ( 1)( 2)}E X X X λ− − =  
(ii) For this we solve estimating equation. Let ( )T X be unbiased for cose λ λ− .  

Then 
       ( ) cos for all >0ET X e λ λ λ−= .   

       
0

( ) cos for all >0
!

x

x

eT x e
x

λ
λλ λ λ

−∞
−

=

⇒ =∑  

       
2 4

0
( ) 1 for all >0

! 2! 4!

x

x
T x

x
λ λ λ λ

∞

=

⇒ = − + −∑   

As the two power series are identical on an open interval, equating coefficients of 
powers of λ on both sides gives 
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(iii) For this we have to solve estimating equation. However, we use Euler’s identity  
to solve it. 
 
Let ( )U X be unbiased for sin λ . Then 
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Applying De-Moivre’s Theorem on the two terms inside the parentheses, we get 
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Equating the coefficients of powers of λ on both sides gives 
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4

x xU x xπ = = 
 
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In Parts (iv) and (v) , we can show in a similar way that estimating equations do not 
have any solutions. 
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of 1and σ
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respectively. As 

2and X S are independently distributed, 1 2U X T= is unbiased for  .µ
σ

   Further, 

2 1U X bT= +  is unbiased for  .bµ σ+  As 2and X S are consistent for 2and µ σ

respectively, 1 2and UU are also consistent for  µ
σ

  and bµ σ+  respectively. 

 

3. As 1
3 2,
2 3

XTθµ′ = = is unbiased for θ . T is also consistent for θ . 

 

4. As 1
1( ) ,iE X T
λ

=  is unbiased. Also 1 2and X X are independent. So 
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5.  The minimizing choice of α is obtained as 
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6. 1( ) exp , , 0.xf x xµ µ σ
σ σ

− = − > > 
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 ( )2 2
1 2,µ µ σ µ µ σ σ′ ′= + = + + . 

So 2 2
1 2 2,µ µ µ µ σ µ µ′ ′ ′ ′ ′= − − = − . The method of moments estimators for 

 and µ σ are therefore given by 
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The method of moments estimators for  and α β are therefore given by 
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8.  Since 1 0µ′ = , we consider 
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 and the method of 

moments estimators for 2 and µ σ are therefore given by 
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10. 1( ) exp , , , 0.
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