Statistical Inference Test Set 1

- 1. Let $X \sim P(\lambda)$. Find unbiased estimators of (i) λ^3 , (ii) $e^{-\lambda} \cos \lambda$, (iii) $\sin \lambda$. (iv) Show that there does not exist unbiased estimators of $1/\lambda$, and $\exp\{-1/\lambda\}$.
- 2. Let $X_1, X_2, ..., X_n$ be a random sample from a $N(\mu, \sigma^2)$ population. Find unbiased and consistent estimators of the signal to noise ration $\frac{\mu}{\sigma}$ and quantile $\mu + b\sigma$, where *b* is any given real.
- 3. Let $X_1, X_2, ..., X_n$ be a random sample from a $U(-\theta, 2\theta)$ population. Find an unbiased and consistent estimator of θ .
- 4. Let X_1, X_2 be a random sample from an exponential population with mean $1/\lambda$. Let $T_1 = \frac{X_1 + X_2}{2}, T_2 = \sqrt{X_1 X_2}$. Show that T_1 is unbiased and T_2 is biased. Further, prove that $MSE(T_2) \le Var(T_1)$.
- 5. Let T_1 and T_2 be unbiased estimators of θ with respective variances σ_1^2 and σ_2^2 and $\operatorname{cov}(T_1, T_2) = \sigma_{12}$ (assumed to be known). Consider $T = \alpha T_1 + (1 \alpha)T_2, 0 \le \alpha \le 1$. Show that *T* is unbiased and find value of α for which Var(T) is minimized.
- 6. Let $X_1, X_2, ..., X_n$ be a random sample from an $Exp(\mu, \sigma)$ population. Find the method of moment estimators (MMEs) of μ and σ .
- 7. Let $X_1, X_2, ..., X_n$ be a random sample from a Pareto population with density $f_X(x) = \frac{\beta \alpha^{\beta}}{r^{\beta+1}}, x > \alpha, \alpha > 0, \beta > 2$. Find the method of moments estimators of α, β .
- 8. Let $X_1, X_2, ..., X_n$ be a random sample from a $U(-\theta, \theta)$ population. Find the MME of θ .
- 9. Let $X_1, X_2, ..., X_n$ be a random sample from a lognormal population with density

$$f_X(x) = \frac{1}{\sigma x \sqrt{2\pi}} \exp\left\{-\frac{1}{2\sigma^2} (\log_e x - \mu)^2\right\}, x > 0.$$
 Find the MMEs of μ and σ^2

10. Let $X_1, X_2, ..., X_n$ be a random sample from a double exponential (μ, σ) population. Find the MMEs of μ and σ .

Hints and Solutions

1. (i) $E\{X(X-1)(X-2)\} = \lambda^3$

(ii) For this we solve estimating equation. Let T(X) be unbiased for $e^{-\lambda} \cos \lambda$. Then

$$ET(X) = e^{-\lambda} \cos \lambda \text{ for all } \lambda > 0.$$

$$\Rightarrow \sum_{x=0}^{\infty} T(x) \frac{e^{-\lambda} \lambda^x}{x!} = e^{-\lambda} \cos \lambda \text{ for all } \lambda > 0$$

$$\Rightarrow \sum_{x=0}^{\infty} T(x) \frac{\lambda^x}{x!} = 1 - \frac{\lambda^2}{2!} + \frac{\lambda^4}{4!} - \dots \text{ for all } \lambda > 0$$

As the two power series are identical on an open interval, equating coefficients of powers of λ on both sides gives

$$T(x) = 0, \text{ if } x = 2m + 1,$$

= 1, if x = 4m,
= -1, if x = 4m + 2, m = 0, 1, 2,...

(iii) For this we have to solve estimating equation. However, we use Euler's identity to solve it.

Let U(X) be unbiased for $\sin \lambda$. Then

$$\Rightarrow \sum_{x=0}^{\infty} U(x) \frac{\lambda^{x}}{x!} = \frac{1}{2i} e^{\lambda} (e^{i\lambda} - e^{-i\lambda}) \text{ for all } \lambda > 0$$
$$= \frac{1}{2i} (e^{(1+i)\lambda} - e^{(1-i)\lambda}) \text{ for all } \lambda > 0$$
$$= \frac{1}{2i} \left(\sum_{k=0}^{\infty} \frac{\lambda^{k} (1+i)^{k}}{k!} - \sum_{k=0}^{\infty} \frac{\lambda^{k} (1-i)^{k}}{k!} \right) \text{ for all } \lambda > 0.$$

Applying De-Moivre's Theorem on the two terms inside the parentheses, we get

$$\sum_{x=0}^{\infty} U(x) \frac{\lambda^{x}}{x!} = \frac{1}{2i} \sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!} \left[(\sqrt{2})^{k} \left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4} \right)^{k} - (\sqrt{2})^{k} \left(\cos\left(-\frac{\pi}{4}\right) + i\sin\left(-\frac{\pi}{4}\right) \right)^{k} \right]$$
$$= \frac{1}{2i} \sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!} \left[(\sqrt{2})^{k} \left(\cos\frac{k\pi}{4} + i\sin\frac{k\pi}{4} \right) - (\sqrt{2})^{k} \left(\cos\left(-\frac{k\pi}{4}\right) + i\sin\left(-\frac{k\pi}{4}\right) \right) \right]$$
$$= \sum_{k=0}^{\infty} \frac{(\sqrt{2})^{k} \lambda^{k}}{k!} \sin\left(\frac{k\pi}{4}\right) \text{ for all } \lambda > 0$$

Equating the coefficients of powers of λ on both sides gives

$$U(x) = (\sqrt{2})^x \sin\left(\frac{\pi x}{4}\right), x = 0, 1, 2, \dots$$

In Parts (iv) and (v) , we can show in a similar way that estimating equations do not have any solutions.

2. Let
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
, and $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$.
Then $\overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$, and $W = \frac{(n-1)S^2}{\sigma^2} \sim \chi^2_{n-1}$. It can be seen that
 $E(W^{1/2}) = \frac{\sqrt{2} \left[\frac{\overline{n}}{2}\right]}{\left[\frac{n-1}{2}\right]}$ and $E(W^{-1/2}) = \frac{\left[\frac{\overline{n-2}}{2}\right]}{\sqrt{2} \left[\frac{n-1}{2}\right]}$. Using these, we get unbiased estimators
of σ and $\frac{1}{\sigma}$ as $T_1 = \sqrt{\frac{n-1}{2}} \frac{\left[\frac{n-1}{2}\right]}{\left[\frac{\overline{n}}{2}\right]}S$ and $T_2 = \sqrt{\frac{2}{n-1}} \frac{\left[\frac{n-1}{2}\right]}{\left[\frac{n-2}{2}\right]S}$ respectively. As

 \overline{X} and S^2 are independently distributed, $U_1 = \overline{X} T_2$ is unbiased for $\frac{\mu}{\sigma}$. Further, $U_2 = \overline{X} + bT_1$ is unbiased for $\mu + b\sigma$. As \overline{X} and S^2 are consistent for μ and σ^2 respectively, U_1 and U_2 are also consistent for $\frac{\mu}{\sigma}$ and $\mu + b\sigma$ respectively.

3. As
$$\mu'_1 = \frac{3\theta}{2}$$
, $T = \frac{2\overline{X}}{3}$ is unbiased for θ . *T* is also consistent for θ .

4. As
$$E(X_i) = \frac{1}{\lambda}$$
, T_1 is unbiased. Also X_1 and X_2 are independent. So
 $E(T_2) = E\left(\sqrt{X_1X_2}\right) = \left(E(\sqrt{X_1})\right)^2 = \left(\frac{1}{2}\sqrt{\frac{\pi}{\lambda}}\right)^2 = \frac{\pi}{4\lambda}$. $Var(T_1) = \frac{1}{2\lambda^2}$
MS $E(T_2) = E\left(\sqrt{X_1X_2} - \frac{1}{\lambda}\right)^2 = E(X_1X_2) - \frac{2}{\lambda}E\left(\sqrt{X_1X_2}\right) + \frac{1}{\lambda^2}$
 $= \frac{2}{\lambda^2}\left(1 - \frac{\pi}{4}\right)$

5. The minimizing choice of α is obtained as $\frac{\sigma_2^2 - \sigma_{12}}{\sigma_1^2 + \sigma_2^2 - 2\sigma_{12}}$.

6.
$$f(x) = \frac{1}{\sigma} \exp\left(-\frac{x-\mu}{\sigma}\right), x > \mu, \sigma > 0. \quad \mu_1' = \mu + \sigma, \, \mu_2' = \left(\mu + \sigma\right)^2 + \sigma^2.$$

So $\mu = \mu_1' - \sqrt{\mu_2' - {\mu'}^2}, \, \sigma = \sqrt{\mu_2' - {\mu'}^2}$. The method of moments estimators for μ and σ are therefore given by
 $\hat{\mu}_{MM} = \overline{X} - \sqrt{\frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2}, \text{ an } \hat{\sigma}_{MM} \notin \sqrt{\frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2}.$

7.
$$\mu_1' = \frac{\beta \alpha}{\beta - 1}, \ \mu_2' = \frac{\beta \alpha^2}{\beta - 2}.$$
 So $\alpha = \frac{\mu_1' \sqrt{\mu_2'}}{\sqrt{\mu_2' - \mu_1'^2}}, \ \beta = 1 + \sqrt{\frac{\mu_2'}{\mu_2' - \mu_1'^2}}$

The method of moments estimators for α and β are therefore given by

$$\hat{\alpha}_{MM} = \frac{\overline{X}\sqrt{\sum_{i=1}^{n} X_{i}^{2}}}{\sqrt{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}} + \sqrt{\sum_{i=1}^{n} X_{i}^{2}}}, \hat{\beta}_{MM} = 1 + \sqrt{\frac{\sum_{i=1}^{n} X_{i}^{2}}{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}}.$$

8. Since
$$\mu'_1 = 0$$
, we consider $\mu'_2 = \frac{\theta^2}{3}$. So $\hat{\theta}_{MM} = \sqrt{\frac{3}{n} \sum_{i=1}^n X_i^2}$

9.
$$\mu'_1 = e^{\mu + \sigma^2/2}, \ \mu'_2 = e^{2\mu + 2\sigma^2}$$
. So $\mu = \log\left(\frac{\mu'_1}{\sqrt{\mu'_2}}\right), \ \sigma^2 = \log\left(\frac{\mu'_2}{\mu'_1}\right)$ and the method of

moments estimators for μ and σ^2 are therefore given by

$$\hat{\mu}_{MM} = \log\left(\frac{\overline{X}^2}{\sqrt{\frac{1}{n}\sum_{i=1}^n X_i^2}}\right), \ \hat{\sigma}_{MM}^2 = \log\left(\frac{\frac{1}{n}\sum_{i=1}^n X_i^2}{\overline{X}^2}\right).$$
10.
$$f(x) = \frac{1}{2\sigma} \exp\left(-\left|\frac{x-\mu}{\sigma}\right|\right), x \in \mathbb{R}, \ \mu \in \mathbb{R}, \ \sigma > 0. \ \mu_1' = \mu, \ \mu_2' = \mu^2 + 2\sigma^2.$$
So $\mu = \mu_1', \ \sigma = \sqrt{\frac{1}{2}(\mu_2' - {\mu'}^2)}$. The method of moments estimators for μ and σ are therefore given by
$$\sqrt{1 - \frac{n}{2}}$$

$$\hat{\mu}_{MM} = \overline{X}$$
, and $\hat{\sigma}_{MM} = \sqrt{\frac{1}{2n} \sum_{i=1}^{n} (X_i - \overline{X})^2}$.