Statistical Inference

Test Set 1

1. Let $X \sim \mathrm{P}(\lambda)$. Find unbiased estimators of (i) λ^{3}, (ii) $e^{-\lambda} \cos \lambda$, (iii) $\sin \lambda$. (iv) Show that there does not exist unbiased estimators of $1 / \lambda$, and $\exp \{-1 / \lambda\}$.
2. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a $N\left(\mu, \sigma^{2}\right)$ population. Find unbiased and consistent estimators of the signal to noise ration $\frac{\mu}{\sigma}$ and quantile $\mu+b \sigma$, where b is any given real.
3. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a $U(-\theta, 2 \theta)$ population. Find an unbiased and consistent estimator of θ.
4. Let X_{1}, X_{2} be a random sample from an exponential population with mean $1 / \lambda$. Let $T_{1}=\frac{X_{1}+X_{2}}{2}, T_{2}=\sqrt{X_{1} X_{2}}$. Show that T_{1} is unbiased and T_{2} is biased. Further, prove that $\operatorname{MSE}\left(T_{2}\right) \leq \operatorname{Var}\left(T_{1}\right)$.
5. Let T_{1} and T_{2} be unbiased estimators of θ with respective variances σ_{1}^{2} and σ_{2}^{2} and $\operatorname{cov}\left(T_{1}, T_{2}\right)=\sigma_{12}$ (assumed to be known). Consider $T=\alpha T_{1}+(1-\alpha) T_{2}, 0 \leq \alpha \leq 1$. Show that T is unbiased and find value of α for which $\operatorname{Var}(T)$ is minimized.
6. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from an $\operatorname{Exp}(\mu, \sigma)$ population. Find the method of moment estimators (MMEs) of μ and σ.
7. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a Pareto population with density $f_{X}(x)=\frac{\beta \alpha^{\beta}}{x^{\beta+1}}, x>\alpha, \alpha>0, \beta>2$. Find the method of moments estimators of α, β.
8. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a $U(-\theta, \theta)$ population. Find the MME of θ.
9. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a lognormal population with density $f_{X}(x)=\frac{1}{\sigma x \sqrt{2 \pi}} \exp \left\{-\frac{1}{2 \sigma^{2}}\left(\log _{e} x-\mu\right)^{2}\right\}, x>0$. Find the MMEs of μ and σ^{2}.
10. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a double exponential (μ, σ) population. Find the MMEs of μ and σ.

Hints and Solutions

1. (i) $E\{X(X-1)(X-2)\}=\lambda^{3}$
(ii) For this we solve estimating equation. Let $T(X)$ be unbiased for $e^{-\lambda} \cos \lambda$. Then

$$
\begin{aligned}
& E T(X)=e^{-\lambda} \cos \lambda \text { for all } \lambda>0 . \\
\Rightarrow & \sum_{x=0}^{\infty} T(x) \frac{e^{-\lambda} \lambda^{x}}{x!}=e^{-\lambda} \cos \lambda \text { for all } \lambda>0 \\
\Rightarrow & \sum_{x=0}^{\infty} T(x) \frac{\lambda^{x}}{x!}=1-\frac{\lambda^{2}}{2!}+\frac{\lambda^{4}}{4!}-\cdots \cdots \text { for all } \lambda>0
\end{aligned}
$$

As the two power series are identical on an open interval, equating coefficients of powers of λ on both sides gives

$$
\begin{aligned}
T(x) & =0, \text { if } x=2 m+1, \\
& =1, \text { if } x=4 m, \\
& =-1, \text { if } x=4 m+2, m=0,1,2, \ldots
\end{aligned}
$$

(iii) For this we have to solve estimating equation. However, we use Euler's identity to solve it.

Let $U(X)$ be unbiased for $\sin \lambda$. Then

$$
\begin{aligned}
\Rightarrow \sum_{x=0}^{\infty} U(x) \frac{\lambda^{x}}{x!} & =\frac{1}{2 i} e^{\lambda}\left(e^{i \lambda}-e^{-i \lambda}\right) \text { for all } \lambda>0 \\
& =\frac{1}{2 i}\left(e^{(1+i) \lambda}-e^{(1-i) \lambda}\right) \text { for all } \lambda>0 \\
& =\frac{1}{2 i}\left(\sum_{k=0}^{\infty} \frac{\lambda^{k}(1+i)^{k}}{k!}-\sum_{k=0}^{\infty} \frac{\lambda^{k}(1-i)^{k}}{k!}\right) \text { for all } \lambda>0 .
\end{aligned}
$$

Applying De-Moivre's Theorem on the two terms inside the parentheses, we get

$$
\begin{aligned}
\sum_{x=0}^{\infty} U(x) \frac{\lambda^{x}}{x!} & =\frac{1}{2 i} \sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!}\left[(\sqrt{2})^{k}\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)^{k}-(\sqrt{2})^{k}\left(\cos \left(-\frac{\pi}{4}\right)+i \sin \left(-\frac{\pi}{4}\right)\right)^{k}\right] \\
& =\frac{1}{2 i} \sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!}\left[(\sqrt{2})^{k}\left(\cos \frac{k \pi}{4}+i \sin \frac{k \pi}{4}\right)-(\sqrt{2})^{k}\left(\cos \left(-\frac{k \pi}{4}\right)+i \sin \left(-\frac{k \pi}{4}\right)\right)\right] \\
& =\sum_{k=0}^{\infty} \frac{(\sqrt{2})^{k} \lambda^{k}}{k!} \sin \left(\frac{k \pi}{4}\right) \text { for all } \lambda>0
\end{aligned}
$$

Equating the coefficients of powers of λ on both sides gives
$U(x)=(\sqrt{2})^{x} \sin \left(\frac{\pi x}{4}\right), x=0,1,2, \ldots$
In Parts (iv) and (v), we can show in a similar way that estimating equations do not have any solutions.
2. Let $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$, and $S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$.

Then $\bar{X} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right)$, and $\mathrm{W}=\frac{(n-1) S^{2}}{\sigma^{2}} \sim \chi_{n-1}^{2}$. It can be seen that
$E\left(W^{1 / 2}\right)=\frac{\sqrt{2} \sqrt{\frac{n}{2}}}{\sqrt{\frac{n-1}{2}}}$ and $E\left(W^{-1 / 2}\right)=\frac{\sqrt{\frac{n-2}{2}}}{\sqrt{2} \frac{n-1}{2}}$. Using these, we get unbiased estimators
of $\quad \sigma$ and $\frac{1}{\sigma} \quad$ as $\quad T_{1}=\sqrt{\frac{n-1}{2}} \frac{\sqrt{\frac{n-1}{2}}}{\sqrt{\frac{n}{2}}} S$ and $T_{2}=\sqrt{\frac{2}{n-1}} \frac{\sqrt{\frac{n-1}{2}}}{\sqrt{\frac{n-2}{2}}} \frac{1}{S}$ respectively. As
\bar{X} and S^{2} are independently distributed, $U_{1}=\bar{X} T_{2}$ is unbiased for $\frac{\mu}{\sigma}$. Further, $U_{2}=\bar{X}+b T_{1}$ is unbiased for $\mu+b \sigma$. As \bar{X} and S^{2} are consistent for μ and σ^{2} respectively, U_{1} and U_{2} are also consistent for $\frac{\mu}{\sigma}$ and $\mu+b \sigma$ respectively.
3. As $\mu_{1}^{\prime}=\frac{3 \theta}{2}, T=\frac{2 \bar{X}}{3}$ is unbiased for $\theta . T$ is also consistent for θ.
4. As $E\left(X_{i}\right)=\frac{1}{\lambda}, T_{1}$ is unbiased. Also X_{1} and X_{2} are independent. So

$$
\begin{aligned}
& E\left(T_{2}\right)=E\left(\sqrt{X_{1} X_{2}}\right)=\left(E\left(\sqrt{X_{1}}\right)\right)^{2}=\left(\frac{1}{2} \sqrt{\frac{\pi}{\lambda}}\right)^{2}=\frac{\pi}{4 \lambda} . \operatorname{Var}\left(T_{1}\right)=\frac{1}{2 \lambda^{2}} . \\
& \left.M S E T_{2}\right)=E\left(\sqrt{X_{1} X_{2}}-\frac{1}{\lambda}\right)^{2}=E\left(X_{1} X_{2}\right)-\frac{2}{\lambda} E\left(\sqrt{X_{1} X_{2}}\right)+\frac{1}{\lambda^{2}} \\
& \quad=\frac{2}{\lambda^{2}}\left(1-\frac{\pi}{4}\right)
\end{aligned}
$$

5. The minimizing choice of α is obtained as $\frac{\sigma_{2}^{2}-\sigma_{12}}{\sigma_{1}^{2}+\sigma_{2}^{2}-2 \sigma_{12}}$.
6. $f(x)=\frac{1}{\sigma} \exp \left(-\frac{x-\mu}{\sigma}\right), x>\mu, \sigma>0 . \mu_{1}^{\prime}=\mu+\sigma, \mu_{2}^{\prime}=(\mu+\sigma)^{2}+\sigma^{2}$.

So $\mu=\mu_{1}^{\prime}-\sqrt{\mu_{2}^{\prime}-\mu^{\prime 2}}, \sigma=\sqrt{\mu_{2}^{\prime}-\mu^{\prime 2}}$. The method of moments estimators for μ and σ are therefore given by
$\hat{\mu}_{M M}=\bar{X}-\sqrt{\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}$, an $\hat{\sigma}_{M M} \sqrt{\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}$.
7. $\mu_{1}^{\prime}=\frac{\beta \alpha}{\beta-1}, \mu_{2}^{\prime}=\frac{\beta \alpha^{2}}{\beta-2}$. So $\alpha=\frac{\mu_{1}^{\prime} \sqrt{\mu_{2}^{\prime}}}{\sqrt{\mu_{2}^{\prime}-\mu_{1}^{\prime 2}}}, \beta=1+\sqrt{\frac{\mu_{2}^{\prime}}{\mu_{2}^{\prime}-\mu_{1}^{\prime 2}}}$

The method of moments estimators for α and β are therefore given by

$$
\hat{\alpha}_{M M}=\frac{\bar{X} \sqrt{\sum_{i=1}^{n} X_{i}^{2}}}{\sqrt{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}+\sqrt{\sum_{i=1}^{n} X_{i}^{2}}}, \hat{\beta}_{M M}=1+\sqrt{\frac{\sum_{i=1}^{n} X_{i}^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}} .
$$

8. Since $\mu_{1}^{\prime}=0$, we consider $\mu_{2}^{\prime}=\frac{\theta^{2}}{3}$. So $\hat{\theta}_{M M}=\sqrt{\frac{3}{n} \sum_{i=1}^{n} X_{i}^{2}}$
9. $\mu_{1}^{\prime}=e^{\mu+\sigma^{2} / 2}, \mu_{2}^{\prime}=e^{2 \mu+2 \sigma^{2}}$. So $\mu=\log \left(\frac{\mu_{1}^{\prime 2}}{\sqrt{\mu_{2}^{\prime}}}\right), \sigma^{2}=\log \left(\frac{\mu_{2}^{\prime}}{\mu_{1}^{\prime 2}}\right)$ and the method of moments estimators for μ and σ^{2} are therefore given by

$$
\hat{\mu}_{M M}=\log \left(\frac{\bar{X}^{2}}{\sqrt{\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2}}}\right), \hat{\sigma}_{M M}^{2}=\log \left(\frac{\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2}}{\bar{X}^{2}}\right)
$$

10. $f(x)=\frac{1}{2 \sigma} \exp \left(-\left|\frac{x-\mu}{\sigma}\right|\right), x \in \mathbb{R}, \mu \in \mathbb{R}, \sigma>0 . \mu_{1}^{\prime}=\mu, \mu_{2}^{\prime}=\mu^{2}+2 \sigma^{2}$.

So $\mu=\mu_{1}^{\prime}, \sigma=\sqrt{\frac{1}{2}\left(\mu_{2}^{\prime}-\mu^{\prime 2}\right)}$. The method of moments estimators for μ and σ are therefore given by

$$
\hat{\mu}_{M M}=\bar{X}, \text { and } \hat{\sigma}_{M M}=\sqrt{\frac{1}{2 n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}} .
$$

